Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery

Author:

Yamashita Koichiro1,Tamura Shigehiko2,Honsho Masanori34,Yada Hiroto1ORCID,Yagita Yuichi3,Kosako Hidetaka5,Fujiki Yukio34ORCID

Affiliation:

1. Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan

2. Faculty of Arts and Science, Kyushu University, Fukuoka, Japan

3. Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan

4. Institute of Rheological Functions of Food, Fukuoka, Japan

5. Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan

Abstract

Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Takeda Science Foundation

Naito Foundation

Japan Foundation for Applied Enzymology

Novartis Foundation

Institute of Advanced Medical Sciences

University of Tokushima

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3