High-content imaging-based pooled CRISPR screens in mammalian cells

Author:

Yan Xiaowei1ORCID,Stuurman Nico1ORCID,Ribeiro Susana A.12ORCID,Tanenbaum Marvin E.13,Horlbeck Max A.14ORCID,Liem Christina R.15ORCID,Jost Marco1ORCID,Weissman Jonathan S.16,Vale Ronald D.17ORCID

Affiliation:

1. Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA

2. Cairn Biosciences, Inc., San Francisco, CA

3. Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands

4. Boston Children's Hospital, Boston, MA

5. University of California, San Diego, San Diego, CA

6. Whitehead Institute and Department of Biology, MIT, Cambridge, MA

7. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.

Funder

Howard Hughes Medical Institute

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3