FUS-dependent liquid–liquid phase separation is important for DNA repair initiation

Author:

Levone Brunno R.1ORCID,Lenzken Silvia C.1ORCID,Antonaci Marco1ORCID,Maiser Andreas2ORCID,Rapp Alexander3ORCID,Conte Francesca1ORCID,Reber Stefan4,Mechtersheimer Jonas4,Ronchi Antonella E.1ORCID,Mühlemann Oliver5,Leonhardt Heinrich2ORCID,Cardoso M. Cristina3ORCID,Ruepp Marc-David4ORCID,Barabino Silvia M.L.1ORCID

Affiliation:

1. Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy

2. Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany

3. Department of Biology, Technical University of Darmstadt, Darmstadt, Germany

4. UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK

5. Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

Abstract

RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid–liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.

Funder

Swiss National Fond Sinergia

UK Dementia Research Institute

NOMIS Foundation

Deutsche Forschungsgemeinschaft

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3