FIT2 is an acyl–coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis

Author:

Becuwe Michel123,Bond Laura M.123,Pinto Antonio F.M.4,Boland Sebastian123ORCID,Mejhert Niklas123,Elliott Shane D.1235,Cicconet Marcelo6,Graham Morven M.7ORCID,Liu Xinran N.7,Ilkayeva Olga8,Saghatelian Alan4ORCID,Walther Tobias C.1235ORCID,Farese Robert V.123ORCID

Affiliation:

1. Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA

2. Department of Cell Biology, Harvard Medical School, Boston, MA

3. Broad Institute of MIT and Harvard, Cambridge, MA

4. Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA

5. Howard Hughes Medical Institute, Boston, MA

6. Image and Data Analysis Core, Harvard Medical School, Boston, MA

7. Center for Cellular and Molecular Imaging, Department of Cell Biology, Yale School of Medicine, New Haven, CT

8. Departments of Medicine and Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC

Abstract

The endoplasmic reticulum is a cellular hub of lipid metabolism, coordinating lipid synthesis with continuous changes in metabolic flux. Maintaining ER lipid homeostasis despite these fluctuations is crucial to cell function and viability. Here, we identify a novel mechanism that is crucial for normal ER lipid metabolism and protects the ER from dysfunction. We identify the molecular function of the evolutionarily conserved ER protein FIT2 as a fatty acyl–coenzyme A (CoA) diphosphatase that hydrolyzes fatty acyl–CoA to yield acyl 4′-phosphopantetheine. This activity of FIT2, which is predicted to be active in the ER lumen, is required in yeast and mammalian cells for maintaining ER structure, protecting against ER stress, and enabling normal lipid storage in lipid droplets. Our findings thus solve the long-standing mystery of the molecular function of FIT2 and highlight the maintenance of optimal fatty acyl–CoA levels as key to ER homeostasis.

Funder

Jane Coffin Childs Memorial Fund for Medical Research

National Institutes of Health

Marie Skłodowska-Curie actions

Salk Institute for Biological Studies

National Cancer Institute

Helmsley Center for Genomic Medicine

Howard Hughes Medical Institute

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3