The cell biology of Parkinson’s disease

Author:

Panicker Nikhil12,Ge Preston134,Dawson Valina L.15234,Dawson Ted M.15236

Affiliation:

1. Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD

2. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD

3. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD

4. Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA

5. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD

6. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non–cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non–cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.

Funder

National Institutes of Health

National Institute of Neurological Disorders and Stroke

National Institute on Aging

JPB Foundation

Michael J. Fox Foundation

RMS Family Foundation

Adrienne Helis Malvin Medical Research Foundation

Diana Helis Henry Medical Research Foundation

Massachusetts Institute of Technology

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3