Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation

Author:

Dobramysl Ulrich12ORCID,Jarsch Iris Katharina12ORCID,Inoue Yoshiko12ORCID,Shimo Hanae12ORCID,Richier Benjamin12,Gadsby Jonathan R.12ORCID,Mason Julia12ORCID,Szałapak Alicja12,Ioannou Pantelis Savvas12ORCID,Correia Guilherme Pereira1,Walrant Astrid12ORCID,Butler Richard1,Hannezo Edouard13,Simons Benjamin D.14ORCID,Gallop Jennifer L.12ORCID

Affiliation:

1. Gurdon Institute, University of Cambridge, Cambridge, UK

2. Department of Biochemistry, University of Cambridge, Cambridge, UK

3. Institute of Science and Technology Austria, Klosterneuburg, Austria

4. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

Abstract

Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures such as filopodia, we analyzed the localization of diverse actin regulators within filopodia in Drosophila embryos and in a complementary in vitro system of filopodia-like structures (FLSs). We found that the composition of the regulatory protein complex where actin is incorporated (the filopodial tip complex) is remarkably heterogeneous both in vivo and in vitro. Our data reveal that different pairs of proteins correlate with each other and with actin bundle length, suggesting the presence of functional subcomplexes. This is consistent with a theoretical framework where three or more redundant subcomplexes join the tip complex stochastically, with any two being sufficient to drive filopodia formation. We provide an explanation for the observed heterogeneity and suggest that a mechanism based on multiple components allows stereotypical filopodial dynamics to arise from diverse upstream signaling pathways.

Funder

European Research Council

Wellcome Trust

Austrian Science Fund

Cancer Research UK

Herchel Smith

Funai Foundation

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3