ENDOPLASMIC FILAMENTS GENERATE THE MOTIVE FORCE FOR ROTATIONAL STREAMING IN NITELLA

Author:

Allen Nina Strömgren1

Affiliation:

1. From the Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222

Abstract

The streaming endoplasm of characean cells has been shown to contain previously unreported endoplasmic filaments along which bending waves are observed under the light microscope using special techniques. The bending waves are similar to those propagated along sperm tails causing propulsion of sperm. In Nitella there is reason to believe that nearly all of the filaments are anchored in the cortex and that their beating propels the endoplasm in which they are suspended. This hypothesis is supported by calculations in which typical and average wave parameters have been inserted into the classical hydrodynamic equations derived for sperm tail bending waves. These calculations come within an order of magnitude of predicting the velocity of streaming and they show that waves of the character described, propagated along an estimated 52 m of endoplasmic filaments per cell, must generate a total motive force per cell within less than an order of magnitude of the forces measured experimentally by others. If we assume that undulating filaments produce the force driving the endoplasm, then the method described for measuring the motive force could lead to a lower than actual value for the motive force, since both centrifugation and vacuolar perfusion would reverse the orientation of some filaments. Observations of the initiation of particle translation in association with the filaments suggest that particle transport and wave propagation, which occur at the same velocity, may both be dependent on the same process. The possibility that some form of contractility provides the motive force for filament flection and particle transport is discussed.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3