V-src kinase shifts the cadherin-based cell adhesion from the strong to the weak state and beta catenin is not required for the shift.

Author:

Takeda H1,Nagafuchi A1,Yonemura S1,Tsukita S1,Behrens J1,Birchmeier W1,Tsukita S1

Affiliation:

1. Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan.

Abstract

The elevation of tyrosine phosphorylation level is thought to induce the dysfunction of cadherin through the tyrosine phosphorylation of beta catenin. We evaluated this assumption using two cell lines. First, using temperature-sensitive v-src-transfected MDCK cells, we analyzed the modulation of cadherin-based cell adhesion by tyrosine phosphorylation. Cell aggregation and dissociation assays at nonpermissive and permissive temperatures indicated that elevation of the tyrosine phosphorylation does not totally affect the cell adhesion ability of cadherin but shifts it from a strong to a weak state. The tyrosine phosphorylation levels of beta catenin, ZO-1, ERM (ezrin/radixin/moesin), but not alpha catenin, vinculin, and alpha-actinin, were elevated in the weak state. To evaluate the involvement of the tyrosine phosphorylation of beta catenin in this shift of cadherin-based cell adhesion, we introduced v-src kinase into L fibroblasts expressing the cadherin-alpha catenin fusion protein, in which beta catenin is not involved in cell adhesion. The introduction of v-src kinase in these cells shifted their adhesion from a strong to a weak state. These findings indicated that the tyrosine phosphorylation of beta catenin is not required for the strong-to-weak state shift of cadherin-based cell adhesion, but that the tyrosine phosphorylation of other junctional proteins, ERM, ZO-1 or unidentified proteins is involved.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3