Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases.

Author:

Owen C A1,Campbell M A1,Sannes P L1,Boukedes S S1,Campbell E J1

Affiliation:

1. Department of Medicine, University of Utah Health Sciences Center, Salt Lake City 84132, USA.

Abstract

Serine proteinases of human polymorphonuclear neutrophils play an important role in neutrophil-mediated proteolytic events; however, the non-oxidative mechanisms by which the cells can degrade extracellular matrix in the presence of proteinase inhibitors have not been elucidated. Herein, we provide the first report that human neutrophils express persistently active cell surface-bound human leukocyte elastase and cathepsin G on their cell surface. Unstimulated neutrophils have minimal cell surface expression of these enzymes; however, phorbol ester induces a 30-fold increase. While exposure of neutrophils to chemoattractants (fMLP and C5a) stimulates modest (two- to threefold) increases in cell surface expression of serine proteinases, priming with concentrations of lipopolysaccharide as low as 100 fg/ml leads to striking (up to 10-fold) increase in chemoattractant-induced cell surface expression, even in the presence of serum proteins. LPS-primed and fMLP-stimulated neutrophils have approximately 100 ng of cell surface human leukocyte elastase activity per 10(6) cells. Cell surface-bound human leukocyte elastase is catalytically active, yet is remarkably resistant to inhibition by naturally occurring proteinase inhibitors. These data indicate that binding of serine proteinases to the cell surface focuses and preserves their catalytic activity, even in the presence of proteinase inhibitors. Upregulated expression of persistently active cell surface-bound serine proteinases on activated neutrophils provides a novel mechanism to facilitate their egress from the vasculature, penetration of tissue barriers, and recruitment into sites of inflammation. Dysregulation of the cell surface expression of these enzymes has the potential to cause tissue destruction during inflammation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3