Small Espin: A Third Actin-bundling Protein and Potential Forked Protein Ortholog in Brush Border Microvilli

Author:

Bartles James R.1,Zheng Lili1,Li Anli1,Wierda Allison1,Chen Bin1

Affiliation:

1. Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611

Abstract

An ∼30-kD isoform of the actin-binding/ bundling protein espin has been discovered in the brush borders of absorptive epithelial cells in rat intestine and kidney. Small espin is identical in sequence to the COOH terminus of the larger (∼110-kD) espin isoform identified in the actin bundles of Sertoli cell–spermatid junctional plaques (Bartles, J.R., A. Wierda, and L. Zheng. 1996. J. Cell Sci. 109:1229–1239), but it contains two unique peptides at its NH2 terminus. Small espin was localized to the parallel actin bundles of brush border microvilli, resisted extraction with Triton X-100, and accumulated in the brush border during enterocyte differentiation/migration along the crypt–villus axis in adults. In transfected BHK fibroblasts, green fluorescent protein–small espin decorated F-actin–containing fibers and appeared to elicit their accumulation and/or bundling. Recombinant small espin bound to skeletal muscle and nonmuscle F-actin with high affinity (Kd = 150 and 50 nM) and cross-linked the filaments into bundles. Sedimentation, gel filtration, and circular dichroism analyses suggested that recombinant small espin was a monomer with an asymmetrical shape and a high percentage of α-helix. Deletion mutagenesis suggested that small espin contained two actin-binding sites in its COOH-terminal 116–amino acid peptide and that the NH2-terminal half of its forked homology peptide was necessary for bundling activity.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3