Affiliation:
1. Department of Cell and Structural Biology, and Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
Abstract
The clustering of acetylcholine receptors (AChR) on skeletal muscle fibers is an early event in the formation of neuromuscular junctions. Recent studies show that laminin as well as agrin can induce AChR clustering. Since the α7β1 integrin is a major laminin receptor in skeletal muscle, we determined if this integrin participates in laminin and/or agrin-induced AChR clustering. The alternative cytoplasmic domain variants, α7A and α7B, and the extracellular spliced forms, α7X1 and α7X2, were studied for their ability to engage in AChR clustering. Immunofluorescence microscopy of C2C12 myofibers shows that the α7β1 integrin colocalizes with laminin-induced AChR clusters and to a much lesser extent with agrin-induced AChR clusters. However, together laminin and agrin promote a synergistic response and all AChR colocalize with the integrin. Laminin also induces the physical association of the integrin and AChR. High concentrations of anti-α7 antibodies inhibit colocalization of the integrin with AChR clusters as well as the enhanced response promoted by both laminin and agrin. Engaging the integrin with low concentrations of anti-α7 antibody initiates cluster formation in the absence of agrin or laminin. Whereas both the α7A and α7B cytoplasmic domain variants cluster with AChR, only those isoforms containing the α7X2 extracellular domain were active. These results demonstrate that the α7β1 integrin has a physiologic role in laminin-induced AChR clustering, that alternative splicing is integral to this function of the α7 chain, and that laminin, agrin, and the α7β1 integrin interact in a common or convergent pathway in the formation of neuromuscular junctions.
Publisher
Rockefeller University Press
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献