When Overexpressed, a Novel Centrosomal Protein, RanBPM, Causes Ectopic Microtubule Nucleation Similar to γ-Tubulin

Author:

Nakamura Masafumi11,Masuda Hirohisa11,Horii Johji1,Kuma Kei-ichi1,Yokoyama Nobuhiko11,Ohba Tomoyuki1,Nishitani Hideo1,Miyata Takashi1,Tanaka Masao1,Nishimoto Takeharu1

Affiliation:

1. Department of Molecular Biology, Department of Surgery, and Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, Fukuoka 812-82, Japan; Laboratory of Cellular and Molecular Biology, The Institute of Physical and Chemical Research (RIKEN) 2-1 Hirosawa, Wako, Saitama 351-01, Japan; Inheritance and Variation Group, PRESTO, Japan Science and Technology Corporation, Kyoto

Abstract

A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was localized within the centrosome throughout the cell cycle. Overexpression of RanBPM produced multiple spots which were colocalized with γ-tubulin and acted as ectopic microtubule nucleation sites, resulting in a reorganization of microtubule network. RanBPM cosedimented with the centrosomal fractions by sucrose- density gradient centrifugation. The formation of microtubule asters was inhibited not only by anti- RanBPM antibodies, but also by nonhydrolyzable GTP-Ran. Indeed, RanBPM specifically interacted with GTP-Ran in two-hybrid assay. The central part of asters stained by anti-RanBPM antibodies or by the mAb to γ-tubulin was faded by the addition of GTPγS-Ran, but not by the addition of anti-RanBPM anti- bodies. These results provide evidence that the Ran-binding protein, RanBPM, is involved in microtubule nucleation, thereby suggesting that Ran regulates the centrosome through RanBPM.

Publisher

Rockefeller University Press

Subject

Cell Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3