Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction.

Author:

Miller T M,Heuser J E

Abstract

Frog nerve-muscle preparations were quick-frozen at various times after a single electrical stimulus in the presence of 4-aminopyridine (4-AP), after which motor nerve terminals were visualized by freeze-fracture. Previous studies have shown that such stimulation causes prompt discharge of 3,000-6,000 synaptic vesicles from each nerve terminal and, as a result, adds a large amount of synaptic vesicle membrane to its plasmalemma. In the current experiments, we sought to visualize the endocytic retrieval of this vesicle membrane back into the terminal, during the interval between 1 s and 2 min after stimulation. Two distinct types of endocytosis were observed. The first appeared to be rapid and nonselective. Within the first few seconds after stimulation, relatively large vacuoles (approximately 0.1 micron) pinched off from the plasma membrane, both near to and far away from the active zones. Previous thin-section studies have shown that such vacuoles are not coated with clathrin at any stage during their formation. The second endocytic process was slower and appeared to be selective, because it internalized large intramembrane particles. This process was manifest first by the formation of relatively small (approximately 0.05 micron) indentations in the plasma membrane, which occurred everywhere except at the active zones. These indentations first appeared at 1 s, reached a peak abundance of 5.5/micron2 by 30 s after the stimulus, and disappeared almost completely by 90 s. Previous thin-section studies indicate that these indentations correspond to clathrin-coated pits. Their total abundance is comparable with the number of vesicles that were discharged initially. These endocytic structures could be classified into four intermediate forms, whose relative abundance over time suggests that, at this type of nerve terminal, endocytosis of coated vesicles has the following characteristics: (a) the single endocytotic event is short lived relative to the time scale of two minutes; (b) earlier forms last longer than later forms; and (c) a single event spends a smaller portion of its lifetime in the flat configuration soon after the stimulus than it does later on.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3