Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression.

Author:

Kretz-Remy C1,Mehlen P1,Mirault M E1,Arrigo A P1

Affiliation:

1. Centre National de la Recherche Scientifique Unité Mixte de Recherche Université Claude Bernard Lyon-I, France.

Abstract

We report here that both kappa B-dependent transactivation of a reporter gene and NF-kappa B activation in response to tumor necrosis factor (TNF alpha) or H2O2 treatments are deficient in human T47D cell transfectants that overexpress seleno-glutathione peroxidase (GSHPx). These cells feature low reactive oxygen species (ROS) levels and decreased intracellular ROS burst in response to TNF alpha treatment. Decreased ROS levels and NF-kappa B activation were likely to result from GSHPx increment since these phenomena were no longer observed when GSHPx activity was reduced by selenium depletion. The cellular contents of the two NF-kappa B subunits (p65 and p50) and of the inhibitory subunit I kappa B-alpha were unaffected by GSHPx overexpression, suggesting that increased GSHPx activity interfered with the activation, but not the synthesis or stability, of Nf-kappa B. Nuclear translocation of NF-kappa B as well as I kappa B-alpha degradation were inhabited in GSHPx-overexpressing cells exposed to oxidative stress. Moreover, in control T47D cells exposed to TNF alpha, a time correlation was observed between elevated ROS levels and I kappa B-alpha degradation. We also show that, in growing T47D cells, GSHPx overexpression altered the isoform composition of I kappa B-alpha, leading to the accumulation of the more basic isoform of this protein. GSHPx overexpression also abolished the TNF alpha-mediated transient accumulation of the acidic and highly phosphorylated I kappa B-alpha isoform. These results suggest that intracellular ROS are key elements that regulate the phosphorylation of I kappa B-alpha, a phenomenon that precedes and controls the degradation of this protein, and then NF-kappa B activation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3