Mice expressing a mutant desmosomal cadherin exhibit abnormalities in desmosomes, proliferation, and epidermal differentiation.

Author:

Allen E1,Yu Q C1,Fuchs E1

Affiliation:

1. Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA.

Abstract

Desmogleins are members of the cadherin superfamily which form the core of desmosomes. In vitro studies indicate that the cytoplasmic domain of desmogleins associates with plakoglobin; however, little is known about the role of this domain in desmosome recognition or assembly in vivo, or about the possible relation of desmoglein mutations to epidermal differentiation and disease. To address these questions we used transgenic mouse technology to produce an NH2-terminally truncated desmoglein (Pemphigus Vulgaris Antigen or Dsg3) in cells known to express its wild-type counterpart. Within 2 d, newborn transgenic animals displayed swelling of their paws, flakiness on their back, and blackening of the tail tip. When analyzed histologically and ultrastructurally, widening of intercellular spaces and disruption of desmosomes were especially striking in the paws and tail. Desmosomes were reduced dramatically in number and were smaller and often peculiar in structure. Immunofluorescence and immunoelectron microscopy revealed no major abnormalities in localization of hemidesmosomal components, but desmosomal components organized aberrantly, resulting in a loss of ultrastructure within the plaque. In regions where desmosome loss was prevalent but where some adhesive structures persisted, the epidermis was thickened, with a marked increase in spinous and stratum corneum layers, variability in granular layer thickness, and parakeratosis in some regions. Intriguingly, a dramatic increase in cell proliferation was also observed concomitant with biochemical changes, including alterations in integrin expression, known to be associated with hyperproliferation. An inflammatory response was also detected in some skin regions. Collectively, these findings demonstrate that a mutation in a desmoglein can perturb epidermal cell-cell adhesion, triggering a cascade of changes in the skin.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3