Redistribution of surface macromolecules in dissociated epithelial cells.

Author:

Pisam M,Ripoche P

Abstract

A number of ultrastructural and cytochemical techniques were used to study intact epithelial cells lining the frog urinary bladder: high resolution autoradiography after administration of [3H]glucosamine or [3H]fucose; 125I iodination of external protein; concanavalin A-peroxidase, periodic acid-chromic acid silver methenamine; and colloidal thorium. Results indicate that the material (probably glycoprotein) coating the apical surface differs from that which lines the lateral and basal surfaces. After dissociation and isolation of the epithelial cells, the material previously confined to the apical surface invaded progressively the opened "tight junctions" (about 5 min), then the lateral membranes (about 40 min), and finally the basal membrane (about 80 min): at that time, the whole cell surface was entirely enveloped by the apical material. Since, on the one hand, the reacting material was confined to the apical surface when the tight junctions were closed (in intact epithelial cells) and since, on the other hand, the apical material was sliding down the laterobasal membranes when the tight junctions were opened (in dissociated cells), it may be concluded that tight junctions contribute to maintain the cell surface specialization in epithelia.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3