The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth.

Author:

Friedlander D R1,Milev P1,Karthikeyan L1,Margolis R K1,Margolis R U1,Grumet M1

Affiliation:

1. Department of Pharmacology, New York University Medical Center, New York 10016.

Abstract

We have previously shown that aggregation of microbeads coated with N-CAM and Ng-CAM is inhibited by incubation with soluble neurocan, a chondroitin sulfate proteoglycan of brain, suggesting that neurocan binds to these cell adhesion molecules (Grumet, M., A. Flaccus, and R. U. Margolis. 1993. J. Cell Biol. 120:815). To investigate these interactions more directly, we have tested binding of soluble 125I-neurocan to microwells coated with different glycoproteins. Neurocan bound at high levels to Ng-CAM and N-CAM, but little or no binding was detected to myelin-associated glycoprotein, EGF receptor, fibronectin, laminin, and collagen IV. The binding to Ng-CAM and N-CAM was saturable and in each case Scatchard plots indicated a high affinity binding site with a dissociation constant of approximately 1 nM. Binding was significantly reduced after treatment of neurocan with chondroitinase, and free chondroitin sulfate inhibited binding of neurocan to Ng-CAM and N-CAM. These results indicate a role for chondroitin sulfate in this process, although the core glycoprotein also has binding activity. The COOH-terminal half of neurocan was shown to have binding properties essentially identical to those of the full-length proteoglycan. To study the potential biological functions of neurocan, its effects on neuronal adhesion and neurite growth were analyzed. When neurons were incubated on dishes coated with different combinations of neurocan and Ng-CAM, neuronal adhesion and neurite extension were inhibited. Experiments using anti-Ng-CAM antibodies as a substrate also indicate that neurocan has a direct inhibitory effect on neuronal adhesion and neurite growth. Immunoperoxidase staining of tissue sections showed that neurocan, Ng-CAM, and N-CAM are all present at highest concentration in the molecular layer and fiber tracts of developing cerebellum. The overlapping localization in vivo, the molecular binding studies, and the striking effects on neuronal adhesion and neurite growth support the view that neurocan may modulate neuronal adhesion and neurite growth during development by binding to neural cell adhesion molecules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3