BONE FORMATION INDUCED IN MOUSE THIGH BY CULTURED HUMAN CELLS

Author:

Anderson H. Clarke1,Coulter P. R.1

Affiliation:

1. From the Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York

Abstract

Cultured FL human amnion cells injected intramuscularly into cortisone-conditioned mice proliferate to form discrete nodules which become surrounded by fibroblasts. Within 12 days, fibroblastic zones differentiate into cartilage which calcifies to form bone. Experiments were conducted to test the hypothesis that FL cells behave as an inductor of bone formation. In the electron microscope, FL cells were readily distinguished from surrounding fibroblasts. Transitional forms between the two cell types were not recognized. Stains for acid mucopolysaccharides emphasized the sharp boundary between metachromatic fibroblastic and cartilaginous zones and nonmetachromatic FL cells. 35S was taken up preferentially by fibroblasts and chondrocytes and then deposited extracellularly in a manner suggesting active secretion of sulfated mucopolysaccharides. FL cells showed negligible 35S utilization and secretion. FL cells, labeled in vitro with thymidine-3H, were injected and followed radioautographically, during bone formation. Nuclear label of injected FL cells did not appear in adjacent fibroblasts in quantities sufficient to indicate origin of the latter from FL cells. The minimal fibroblast nuclear labeling seen may represent reutilization of label from necrotic FL cells. It is suggested that FL cells injected into the mouse thigh induced cartilage and bone formation by host fibroblasts.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3