Movement of a karyophilic protein through the nuclear pores of oocytes.

Author:

Feldherr C M,Kallenbach E,Schultz N

Abstract

It has recently been shown that large karyophilic proteins are transported across the nuclear envelope in amphibian oocytes. In consideration of this, the present experiments were performed to identify the specific sites within the envelope through which transport occurs and determine if molecular size is a limiting factor in the transport process. The following experimental procedure was employed: Colloidal gold particles, varying in size from approximately 20 to 170 A in diameter were coated with nucleoplasmin, a 165,000-mol-wt karyophilic protein, which is known to be transported through the envelope. The coated gold particles were microinjected into the cytoplasm of Xenopus oocytes, and the cells were fixed 15 min and 1 h later. The intracellular localization of the gold was then determined with the electron microscope. It was found that nucleoplasmin-coated particles readily enter the nucleus. On the basis of the distribution of the particles associated with the envelope, we concluded that transport occurs through the nuclear pores. Furthermore, the size distributions of the gold particles present in the nucleus and cytoplasm were not significantly different, indicating that the envelope does not discriminate among particles with diameters ranging from 50 to 200 A (the dimensions including the nucleoplasmin coat). Colloidal gold coated with trypsin-digested nucleoplasmin (which lacks the polypeptide domain required for transport) or exogenous polyvinylpyrrolidone were largely excluded from the nucleus and showed no evidence of transport.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3