Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin.

Author:

Bähler M1,Benfenati F1,Valtorta F1,Czernik A J1,Greengard P1

Affiliation:

1. Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York 10021.

Abstract

Synapsin I is a neuron-specific phosphoprotein that is concentrated in the presynaptic nerve terminal in association with the cytoplasmic surface of synaptic vesicles. It has been demonstrated to bundle F-actin in a phosphorylation-dependent manner in vitro, a property consistent with its proposed role in linking synaptic vesicles to the cytoskeleton and its involvement in the regulation of neurotransmitter release. Synapsin I is composed of two distinct domains, a COOH terminal, collagenase-sensitive, hydrophilic, and strongly basic tail region, and an NH2 terminal, collagenase-resistant head region relatively rich in hydrophobic amino acids. To elucidate the structural basis for the interactions between synapsin I and F-actin and how it relates to other characteristics of synapsin I, we have performed a structure-function analysis of fragments of synapsin I produced by cysteine-specific cleavage with 2-nitro-5-thiocyanobenzoic acid. The fragments were identified and aligned with the parent molecule using the deduced primary structure of synapsin I and the known phosphorylation sites as markers. We have purified these fragments and examined their interactions with F-actin. Two distinct fragments, a 29-kD NH2-terminal fragment and a 15-kD middle fragment, were shown to contain F-actin binding sites. A 51/54-kD middle/tail fragment retained the F-actin binding and bundling activity of synapsin I, but the isolated tail fragment did not retain either activity. In contrast to phosphorylation of sites two and three in intact synapsin I, which abolishes F-actin bundling activity, phosphorylation of these sites in the middle/tail fragment failed to abolish this activity. In conclusion, three domains of synapsin I appear to be involved in F-actin binding and bundling.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3