A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors.

Author:

Carnemolla B1,Balza E1,Siri A1,Zardi L1,Nicotra M R1,Bigotti A1,Natali P G1

Affiliation:

1. Cell Biology Laboratory, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.

Abstract

Fibronectin (FN) represents the mixture of a number of structurally different molecules (isoforms) whose make-up varies depending on the FN sources. FN from cultured transformed human cells has a very different isoform composition with respect to its normal counterpart. In fact, SV-40-transformed WI-38VAI3 human fibroblasts produce high levels of a FN isoform (B-FN) which is very poorly expressed in their normal, WI-38, counterpart. We have recently demonstrated that the B-FN isoform derives from a differential splicing pattern of the FN primary transcript which leads, in transformed cells, to a high level expression of the exon ED-B (Zardi, L., B. Carnemolla, A. Siri, T. E. Petersen, G. Paolella, G. Sebastio, and F. E. Baralle. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:2337-2342). Here we report on the production and characterization of a monoclonal antibody (BC-1) which recognizes an epitope within the protein sequence coded for by the ED-B exon. This monoclonal antibody makes it possible to carry out immunohistochemical analysis of the distribution of the ED-B-containing FN isoform (B-FN) in human tissues. The results show that while in normal, adult, human tissues total FN has a widespread distribution, the B-FN isoform is restricted only to synovial cells, to some vessels and areas of the interstitium of the ovary, and to the myometrium. On the contrary, the B-FN isoform has a much greater expression in fetal and tumor tissues. These results demonstrate that, in vivo, different FN isoforms have a differential distribution and indicate that the B-FN isoform may play a role in ontogenesis and oncogenetic processes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3