Mechanism of inhibition of polypeptide chain initiation in calcium-depleted Ehrlich ascites tumor cells.

Author:

Kumar R V1,Wolfman A1,Panniers R1,Henshaw E C1

Affiliation:

1. Cancer Center, University of Rochester, New York 14642.

Abstract

Protein synthesis in Ehrlich ascites tumor cells is inhibited when cellular calcium is depleted by the addition of EGTA to the growth medium. This inhibition is at the level of polypeptide chain initiation as evidenced by a disaggregation of polyribosomes accompanied by a significant elevation in 80-S monomers. To identify direct effects of calcium on the protein synthesis apparatus we have developed a calcium-dependent, cell-free protein-synthesizing system from the Ehrlich cells by using 1,2-bis(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a recently developed chelator with a high (greater than 10(5)) selectivity for calcium (pKa = 6.97) over magnesium (pKa = 1.77). BAPTA inhibits protein synthesis by 70% at 1 mM and 90% at 2 mM. This effect was reversed by calcium but not by other cations tested. The levels of 43-S complexes (i.e., 40-S subunits containing bound methionyl-tRNAf.eIF-2.GTP) were significantly lower in the calcium-deprived incubations, indicating either inhibition of the rate of formation or decreased stability of 43-S complexes. Analysis of 43-S complexes on CsCl gradients showed that in BAPTA-treated lysates, 40-S subunits containing eIF-3, completely disappeared and the residual methionyl-tRNA-containing complexes were bound to 40-S subunits lacking eIF-3. Our results demonstrate a direct involvement of Ca2+ in protein synthesis and we have localized the effect of calcium deprivation to decreased binding of eIF-2 and eIF-3 to 40-S subunits.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3