The dynamic nature of the Golgi complex.

Author:

Griffiths G1,Fuller S D1,Back R1,Hollinshead M1,Pfeiffer S1,Simons K1

Affiliation:

1. Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.

Abstract

The intracellular transport of newly synthesized G protein of vesicular stomatitis virus is blocked at 20 degrees C and this spanning membrane glycoprotein accumulates in the last Golgi compartment, the trans Golgi-network (TGN). Previous morphological evidence suggested that the TGN enlarged significantly under this condition. In the present study we have used stereological procedures to estimate the volume and surface area of the Golgi stack and the TGN of baby hamster kidney cells under different conditions. The results indicate that the increase in the size of the TGN at 20 degrees C is accompanied by a significant decrease in the surface area and volume of the preceding Golgi compartments. A similar effect is also seen in uninfected cells at 20 degrees C, as well as during normal (37 degrees C) infection with Semliki Forest virus. In the latter case, however, the decrease in the size of the Golgi stack and the increase in that of the TGN is not accompanied by inhibition of transport from the Golgi complex to the cell surface. The results indicate that the Golgi stack and the TGN are dynamic and interrelated structures that are capable of rapid alteration in total surface area in response to changes in the rates of membrane transport.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pore formation in complex biological membranes: torn between evolutionary needs;2024-05-08

2. PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination;Journal of Clinical Investigation;2023-02-01

3. Golgi and TGN;Encyclopedia of Cell Biology;2023

4. PI(4,5)P2: signaling the plasma membrane;Biochemical Journal;2022-11-11

5. The Golgi Apparatus and its Next-Door Neighbors;Frontiers in Cell and Developmental Biology;2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3