Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes.

Author:

Connolly T1,Collins P1,Gilmore R1

Affiliation:

1. Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachusetts 01655.

Abstract

We have used proteinase K as a probe to detect cytoplasmically and luminally exposed segments of nascent polypeptides undergoing transport across mammalian microsomal membranes. A series of translocation intermediates consisting of discrete-sized nascent chains was prepared by including microsomal membranes in cell-free translations of mRNAs lacking termination codons. The truncated mRNAs were derived from preprolactin and the G protein of vesicular stomatitis virus and encoded nascent chains ranging between 64 and 200 amino acid residues long. Partially translocated nascent chains of 100 amino acid residues or less were insensitive to protease digestion from the external surface of the membrane while longer nascent chains were susceptible to digestion by externally added protease. We conclude that the increased protease sensitivity of larger nascent chains is due to the exposure of a segment of the nascent polypeptide on the cytoplasmic face of the membrane. In contrast, low molecular weight nascent chains were remarkably resistant to protease digestion even after detergent solubilization of the membrane. The protease resistant behaviour of detergent solubilized nascent chains could be abolished by release of the polypeptide from the ribosome or by the addition of protein denaturants. We propose that the protease resistance of partially translocated nascent chains can be ascribed to components of the translocation apparatus that remain bound to the nascent chain after detergent solubilization of the membrane.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3