Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components.

Author:

Jaakkola S1,Peltonen J1,Uitto J J1

Affiliation:

1. Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.

Abstract

Perineurial cell cultures were established from the sciatic nerves of adult Wistar rats. Highly enriched cultures were studied with respect to the production of extracellular matrix components under conditions free from the influence of Schwann cells, axons, or the extracellular matrix of peripheral nerves. Indirect immunofluorescence staining revealed the presence of collagen type IV epitopes, and electron microscopy demonstrated patches of basement membrane on the perineurial cell surfaces. Collagenous fibrils with a diameter of 15-20 nm were also observed in the intracellular space. SDS-PAGE of radiolabeled medium proteins showed a pattern of bands suggesting the synthesis and secretion of fibronectin, and type I and IV collagens. Northern hybridizations revealed characteristic polymorphic mRNA transcripts corresponding to fibronectin, laminin B2 chain, as well as to the alpha-chain subunits of type I, III, and IV collagens. Furthermore, in situ hybridizations suggested expression of these genes by cultured perineurial cells without apparent heterogeneity within the cell populations. In situ hybridizations of sciatic nerve tissue from 2-wk-old rats also suggested that perineurial cells express alpha 1(I) and alpha 2(IV) collagen, as well as laminin B2 chain genes in vivo. This profile of matrix gene expression is different from that of Schwann cells, which do not synthesize fibronectin, or that of fibroblastic cells, which do not form a cell surface basement membrane. The capability of perineurial cells to express genes for the basement membrane zone and for interstitial collagens further adds to our understanding of the functional role of perineurial cells in developing and healing peripheral nerve, as well as in certain neoplastic lesions of neural origin, such as von Recklinghausen's neurofibromas.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3