Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH.

Author:

Heuser J1

Affiliation:

1. Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

Lysosomes labeled by uptake of extracellular horseradish peroxidase display remarkable changes in shape and cellular distribution when cytoplasmic pH is experimentally altered. Normally, lysosomes in macrophages and fibroblasts cluster around the cell center. However, when the cytoplasmic pH is lowered to approximately pH 6.5 by applying acetate or by various other means, lysosomes promptly move outward and accumulate in tight clusters at the very edge of the cell, particularly in regions that are actively ruffling before acidification but become quiescent. This movement follows the distribution of microtubules in these cells, and does not occur if microtubules are depolymerized with nocodazole before acidification. Subsequent removal of acetate or the other stimuli to acidification results in prompt resumption of ruffling activity and return of lysosomes into a tight cluster at the cell center. This is correlated with a rebound alkalinization of the cytoplasm. Correspondingly, direct application of weak bases also causes hyperruffling and unusually complete withdrawal of lysosomes to the cell center. Thus, lysosomes appear to be acted upon by microtubule-based motors of both the anterograde (kinesin) type as well as the retrograde (dynein) type, or else they possess bidirectional motors that are reversed by changes in cytoplasmic pH. During the outward movements induced by acidification, lysosomes also appear to be smaller and more predominantly vesicular than normal, while during inward movements they appear to be more confluent and elongated than normal, often becoming even more tubular than in phorbol-treated macrophages (Phaire-Washington, L., S. C. Silverstein, and E. Wang. 1980. J. Cell Biol. 86:641-655). These size and shape changes suggest that cytoplasmic pH also affects the fusion/fission properties of lysosomes. Combined with pH effects on their movement, the net result during recovery from acidification is a stretching of lysosomes into tubular forms along microtubules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3