Affiliation:
1. Department of Cell Biology, Yale University, New Haven, Connecticut 06510.
Abstract
Ca2+ and GTP hydrolysis are shown to be required for the transport of protein between the ER and the cis-Golgi compartment in semiintact cells, an in vitro system that reconstitutes transport between intact organelles. Transport was inhibited rapidly and irreversibly in the presence of micromolar concentrations of the nonhydrolyzable GTP analogue, GTP gamma S. The transport block in the presence of GTP gamma S was found to be distal to a post-ER, pre-Golgi compartment where proteins accumulate during incubation at 15 degrees C. In addition, transport was completely inhibited in the absence of free Ca2+. A sharp peak defining optimal transport between the ER and the cis-Golgi was found to occur in the presence of 0.1 microM free Ca2+. Inhibition of transport in the absence of free Ca2+ was found to be fully reversible allowing the step inhibited by GTP gamma S to be assigned to a position intermediate between the ER and the Ca2+ requiring step. The results suggest that GTP hydrolysis may trigger a switch to insure vectorial transport of protein along the ER/Golgi pathway, and that a free Ca2+ level similar to the physiological levels found in interphase cells is essential for a terminal step in vesicle delivery to the cis-Golgi compartment.
Publisher
Rockefeller University Press
Cited by
340 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献