Experimental observations on the development of polarity by hippocampal neurons in culture.

Author:

Goslin K1,Banker G1

Affiliation:

1. Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.

Abstract

In culture, hippocampal neurons develop a polarized form, with a single axon and several dendrites. Transecting the axons of hippocampal neurons early in development can cause an alteration of polarity; a process that would have become a dendrite instead becomes the axon (Dotti, C. G., and G. A. Banker. 1987. Nature (Lond.). 330:254-256). To investigate this phenomenon more systematically, we transected axons at varying lengths. The greater the distance of the transection from the soma, the greater the probability for regrowth of the original axon. However, it was not the absolute length of the axonal stump that determined the response to transection, but rather its length relative to the lengths of the cell's other processes. If one process was greater than 10 microns longer than the others, it invariably became the axon regardless of its identity before transection. Conversely, when a cell's processes were nearly equal in length, it was impossible to predict which would become the axon. In these cases, axonal outgrowth began only after a long latency. During this interval, the processes appeared to be in dynamic equilibrium, some growing for short distances while others retracted. When one process exceeded the others by a critical length, it rapidly elongated to become the axon. The establishment of neuronal polarity during normal development may similarly involve an interaction among processes whose identities have not yet been determined. When, by chance, one exceeds the others by a critical length, it becomes specified as the axon.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 364 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3