Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells.

Author:

Haldar K1,de Amorim A F1,Cross G A1

Affiliation:

1. Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305.

Abstract

The asexual development of the human malaria parasite Plasmodium falciparum is largely intraerythrocytic. When 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino]caproyl] phosphatidylcholine (NBD-PC) was incorporated into infected and uninfected erythrocyte membranes at 0 degrees C, it remained at the cell surface. At 10 degrees C, the lipid was rapidly internalized in infected erythrocytes at all stages of parasite growth. Our results indicate that the internalization of NDB-PC was not because of endocytosis but rapid transbilayer lipid flip-flop at the infected erythrocyte membrane, followed by monomer diffusion to the parasite. Internalization of the lipid was inhibited by (a) depleting cellular ATP levels; (b) pretreating the cells with N-ethyl maleimide or diethylpyrocarbonate; and (c) 10 mM L-alpha-glycerophosphorylcholine. The evidence suggests protein-mediated and energy dependent transmembrane movement of the PC analogue. The conditions for the internalization of another phospholipid analogue N-4-nitrobenzo-2-oxa-1,3-diazoledipalmitoyl phosphatidylethanolamine (N-NBD-PE) were distinct from that of NBD-PC and suggest the presence of additional mechanism(s) of parasite-mediated lipid transport in the infected host membrane. In spite of the lack of bulk, constitutive endocytosis at the red cell membrane, the uptake of Lucifer yellow by mature infected cells suggests that microdomains of pinocytotic activity are induced by the intracellular parasite. The results indicate the presence of parasite-induced mechanisms of lipid transport in infected erythrocyte membranes that modify host membrane properties and may have important implications on phospholipid asymmetry in these membranes.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3