125I-thrombin binds to clustered receptors on noncoated regions of mouse embryo cell surfaces.

Author:

Carney D H,Bergmann J S

Abstract

We used electron microscope autoradiography (EMAR) to visualize the interaction of 125I-thrombin with its surface receptors on mouse embryo (ME) cells. Autoradiographic grains were spaced over the surface of cells in a periodic nonrandom pattern, indicating 125I-thrombin association with clusters of thrombin receptors. The grain spacing varied slightly from cell to cell, indicating subpopulations of cells with different numbers of thrombin receptors. The average distance between grains on ME cells after binding 125I-thrombin (125 ng/ml) at 37 degrees C was 1.65 +/- 0.49 microns. The average distance between grains on prefixed cells and cells incubated with 125I-thrombin at 4 degrees C was not significantly different from that observed at 37 degrees C. This indicates that thrombin receptors are clustered before thrombin binding and that the thrombin receptor aggregates do not redistribute into large aggregates on the surface of cells subsequent to thrombin binding. The number of grains per cluster also does not change under these three binding conditions. Thus, the number of occupied receptors in each cluster appears to be constant. On the basis of the average grain number and spacing, we estimate that each cluster is approximately 400 nm in diameter containing approximately 550 thrombin-binding sites. These receptor-clusters are not associated with specialized structures or coated regions of the membrane. Additionally, grains observed within cells were not found associated with coated vesicles. Therefore, neither the clustering patterns nor internalization of 125I-thrombin are characteristic of molecules which bind to receptors and are internalized by receptor-mediated endocytosis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3