INFOLDED BASAL PLASMA MEMBRANES FOUND IN EPITHELIA NOTED FOR THEIR WATER TRANSPORT

Author:

Pease Daniel C.1

Affiliation:

1. From the Department of Anatomy, School of Medicine, University of California, and Veterans Administration Center, Los Angeles

Abstract

Epithelia noted for their water transport have been studied by electron microscopy with particular emphasis upon basal specializations. Epithelia of the submaxillary gland, choroid plexus, and ciliary body are described in this article, and compared with previous observations on the kidney. The basal surface of all these epithelia is tremendously expanded by folds which penetrate deeply into the cytoplasm. In the submaxillary gland this is particularly notable in cells of the serous alveoli and in the secretory ducts. In these instances the folds have a fairly regular distribution and have a marked tendency to turn back upon themselves and so form repeating S-shaped patterns. In the choroid plexus the penetrating basal folds are limited to the lateral regions of each ependymal cell where they blend with the intercellular membranes that are also folded. In the epithelium of the ciliary body it is the inner layer that is specialized. The surface adjacent to the cavity of the eye penetrates irregularly, nearly through the full depth of the cell layer. The exposed surface is, in a fundamental sense, the basal surface of this epithelial layer. It is apparent that the pattern of folding is quite distinctive in the different epithelia. Therefore, the specializations should be regarded as analogous rather than homologous. Topographic considerations presumably limit the manner in which basal cell surfaces might be expanded. Penetrating folds would seem to represent almost the only possible solution.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 262 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3