UTF1 is a chromatin-associated protein involved in ES cell differentiation

Author:

van den Boom Vincent1,Kooistra Susanne M.1,Boesjes Marije1,Geverts Bart2,Houtsmuller Adriaan B.2,Monzen Koshiro3,Komuro Issei4,Essers Jeroen56,Drenth-Diephuis Loes J.1,Eggen Bart J.L.1

Affiliation:

1. Developmental Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, Netherlands

2. Department of Pathology

3. Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan

4. Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan

5. Department of Cell Biology and Genetics,

6. Department of Radiation Oncology, Erasmus MC, 3000 CA Rotterdam, Netherlands

Abstract

Embryonic stem (ES) cells are able to grow indefinitely (self-renewal) and have the potential to differentiate into all adult cell types (pluripotency). The regulatory network that controls pluripotency is well characterized, whereas the molecular basis for the transition from self-renewal to the differentiation of ES cells is much less understood, although dynamic epigenetic gene silencing and chromatin compaction are clearly implicated. In this study, we report that UTF1 (undifferentiated embryonic cell transcription factor 1) is involved in ES cell differentiation. Knockdown of UTF1 in ES and carcinoma cells resulted in a substantial delay or block in differentiation. Further analysis using fluorescence recovery after photobleaching assays, subnuclear fractionations, and reporter assays revealed that UTF1 is a stably chromatin-associated transcriptional repressor protein with a dynamic behavior similar to core histones. An N-terminal Myb/SANT domain and a C-terminal domain containing a putative leucine zipper are required for these properties of UTF1. These data demonstrate that UTF1 is a strongly chromatin-associated protein involved in the initiation of ES cell differentiation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3