Author:
Heidemann S R,Kirschner M W
Abstract
We have assayed various materials for their ability to induce aster formation by microinjection into unfertilized eggs of Xenopus laevis. We have found that purified basal bodies from Chlamydomonas reinhardtii and Tetrahymena pyriformis induce the formation of asters and irregular cleavage furrows within 1 h after injection. Other microtubule structures such as flagella, flagellar axonemes, cilia, and brain microtubules are completely ineffective at inducing asters or cleavage furrows in unfertilized eggs. When known amounts of sonicated Tetrahymena and Chlamydomonas preparations are injected into unfertilized eggs, 50% of the injected eggs show a furrowing response at approximately 3 cell equvalents for Chlamydomonas and 0.1 cell equivalent for Tetrahymena. These results are close to those expected if basal bodies were the effective astral-inducing agent in these cells. Other materials effective at inducing asters in unfertilized eggs, such as crude brain nuclei, sperm, and a particulate fraction from brain known to induce parthenogenesis in eggs of Rana pipiens, probably contain centrioles as the effective agent. Our experiments provide the first functional assay to indicate that centrioles play an active role in aster initiation. None of the injected materials effective in unfertilized eggs produced any observable response in fully grown oocytes. Oocytes and eggs were found to have equal tubulin pools as judged by colchicine-binding activity. Therefore, the inability of oocytes to form asters cannot be due to a lack of an organizing center or to a lack of tubulin. Experiments in which D2O was found to stimulate aster-like fibrous areas in eggs but not oocytes suggest that the inability of oocytes to form asters may be due to an inability of tubulin in oocytes to assemble.
Publisher
Rockefeller University Press
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献