AN ELECTRON MICROSCOPE STUDY OF THE ENDOPLASMIC RETICULUM IN NEWT NOTOCHORD CELLS AFTER DISTURBANCE WITH ULTRASONIC TREATMENT AND SUBSEQUENT REGENERATION

Author:

Selman G. G.1,Jurand A.1

Affiliation:

1. From the Institute of Animal Genetics, Edinburgh, Scotland

Abstract

Ultrasonic treatment of the tails of Triturus alpestris tadpoles, at intensities of 8 to 15 watts/cm2, at 1 megacycle/sec., for 5 minutes, disrupted the epidermis and caused pycnosis in individual cells of the muscle and neural tube, but caused no damage to the notochord that could be detected by light microscopy. Electron microscopy showed that this ultrasonic treatment disordered nearly all the endoplasmic reticulum (ER) of the notochord cells into irregularly rounded vesicles, but within 3 hours after treatment some parallel arrays of normal endoplasmic reticulum were seen near, and continuous with, the outer nuclear membrane. In addition, a re-ordering of the previously disordered ER took place throughout the cytoplasm, in some cases. A classification was made of the state of the ER as shown in electron micrographs of material fixed immediately, 3, and 24 hours after treatment. This showed that more than half the total endoplasmic reticulum in notochord cells was normal again by 24 hours after treatment.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3