Expression of cone-like properties by chick embryo neural retina cells in glial-free monolayer cultures.

Author:

Adler R,Lindsey J D,Elsner C L

Abstract

We report here that cells present in embryonic chick retinal monolayer cultures express differentiated properties characteristic of chick cones developing in vivo. Cell suspensions from 8-d chick embryo retina (a stage when photoreceptor differentiation has not yet started) were cultured for up to 7 d in low density, glial-free monolayers. Under these conditions, monopolar cells represent approximately 40% of the total number of process-bearing neurons. After 6 d in vitro, most of these monopolar cells showed morphological features reminiscent of developing chick cones. These features could be detected with phase-contrast microscopy, lectin cytochemistry, and transmission and scanning electron microscopy. Characteristic cone traits expressed by cultured monopolar cells included the following: (a) a highly polarized organization; (b) a single, short, usually unbranched neurite; (c) the polarized position of the nucleus close to the origin of the neurite; (d) characteristic cone inner segment features such as abundant free ribosomes, a polarized Golgi apparatus, a cluster of mitochondria distal to the nucleus, a big, membrane-bound, pigment-containing vacuole reminiscent of the "lipid droplet" characteristic of chick cones, and at least in some cases, a well-developed paraboloid; (e) the presence of a complex of apical differentiations including abundant microvilli and in some cases also a cilium-like process; and (f) the staining of the apical region of the cell with peanut lectin, which has been shown to be selective for chick embryo cones (Blanks, J.C., and L.V. Johnson, 1983, J. Comp. Neurol., 221:31-41; and Blanks, J.C., and L.V. Johnson, 1984, Invest. Ophthalmol. Visual Sci., 25:546-557). This pattern of differentiation achieved by 8-d chick retina cells after 6 d in vitro is similar to that shown by 14-d-old chick embryo cones in vivo. Outer segments are not present at this stage of development either in vivo or in vitro. This experimental system is now being used to search for cellular and molecular signals controlling survival and differentiation of cone cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3