Evidence for the regulation of exocytic transport by protein phosphorylation.

Author:

Davidson H W1,McGowan C H1,Balch W E1

Affiliation:

1. Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037.

Abstract

We investigated the effects of the protein phosphatase inhibitors okadaic acid and microcystin-LR upon transport of newly synthesized proteins through the exocytic pathway. Treatment of CHO cells with 1 microM okadaic acid rapidly inhibited movement of a marker protein (vesicular stomatitis virus G protein) from the endoplasmic reticulum to the Golgi compartment. Both okadaic acid and microcystin-LR also inhibited transport in an in vitro assay reconstituting movement to the Golgi compartment, at concentrations equivalent to those required to inhibit phosphorylase phosphatase activity. Inhibition both in vivo and in vitro could be antagonized by protein kinase inhibitors, suggesting that protein phosphorylation was directly responsible for this effect. An early stage in the transport reaction associated with vesicle formation or targeting was inhibited by protein phosphorylation, which could be reversed by fractions enriched in protein phosphatase 2A. Protein kinase antagonists did not inhibit transport between sequential compartments of the exocytic pathway in vitro, suggesting that protein phosphorylation is not itself required for vesicular transport. During mitosis, vesicular transport is inhibited simultaneous to the activation of maturation-promoting factor. It is proposed that the inhibition caused by okadaic acid and microcystin-LR involves a similar mechanism to that responsible for the mitotic arrest of vesicular transport.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3