Targeted disruption of the ABP-120 gene leads to cells with altered motility.

Author:

Cox D1,Condeelis J1,Wessels D1,Soll D1,Kern H1,Knecht D A1

Affiliation:

1. Albert Einstein College of Medicine, Yeshiva University, Bronx, New York.

Abstract

The actin-binding protein ABP-120 has been proposed to play a role in cross-linking F-actin filaments during pseudopod formation in motile Dictyostelium amebas. We have tested this hypothesis by analyzing the phenotype of mutant cell lines which do not produce ABP-120. Two different transformation vectors capable of targeted disruption of the ABP-120 gene locus have been constructed using a portion of an ABP-120 cDNA clone. Three independent cell lines with different disruption events have been obtained after transformation of amebas with these vectors. The disruption of the ABP-120 gene by vector sequences results in either the production of a small amount of truncated ABP-120 or no detectable protein at all. The phenotypes of two different clones lacking ABP-120, generated in strains AX3 and AX4, have been characterized and show identical results. ABP-120- cells tend to remain rounder before and after cAMP stimulation, and do not reextend pseudopods normally after rapid addition of cAMP. In addition, ABP-120- cells translocating in buffer exhibit defects in both the rate and extent of pseudopod formation. The amount of F-actin cross-linked into the cytoskeleton after cAMP stimulation of ABP-120- cells is reduced at times when ABP-120 has been shown to be incorporated into the cytoskeleton, and this correlates temporally with the absence of reextension of pseudopods after cAMP stimulation. The instantaneous velocity is significantly reduced both before and after cAMP stimulation in the ABP-120- cells, and the cells show decreased chemotactic efficiency compared to ABP-120+ controls. This phenotype is consistent with a role for ABP-120 in pseudopod extension by cross-linking actin filaments as proposed by the "cortical expansion model" (Condeelis, J., A. Bresnick, M. Demma, C. Dharmawardhane, R. Eddy, A. L. Hall, R. Sauterer, and V. Warren. 1990. Dev. Genet. 11:333-340).

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3