Abstract
Analysis of the nucleotide tightly associated with isolated erythrocyte cytoskeletons show it to be ADP, rather then ATP. This confirms that at least a major part of the erythrocyte actin is in the F-form. A re-evaluation of the stoichiometry of spectrin and actin in the erythrocyte (taking account of a gross difference between the color responses of the two proteins on staining of electrophoretic gels) leads to values of 1x10(5) and 5x10(5) for the number of molecules of spectrin tetramer and actin respectively per cell. It has been found possible to perform spectrophotometric DNAase I assays fro actin on lysed whole cells. The concentration of monomeric actin at 0 degrees C is approximately 16 μg/ml packed cells. After washing the lysed cells the monomer pool is not re-established, indicating that only a small proportion of the actin subunits are free to dissociate. The actin monomer concentration in the cytosol remains unchanged after equilibration of the cells with cytochalasin E. The ability of actin-containing complexes in the membrane to nucleate the polymerization of added G-actin was measured fluorimetrically; it was found that membranes incubated with cytochalasin E were completely inert with respect to nucleating activity under conditions that favor appreciable growth at the slowly-growing ("pointed") ends of free actin filaments. This suggests that these ends of the actin "protofilaments" in the red cell are blocked or sterically obstructed. After treatment of the membranes with guanidine hydrochloride under conditions that dissociate F-actin, the measured concentration of actin monomer rises to approximately 180 μg/ml of packed cells, which is nearly 70 percent of the total actin content. On treatment with trypsin in the presence of DNAase, the spectrin and 4.1 are extensively degraded, but the actin remains undamaged. This treatment, followed by exposure to guanidine hydrochloride, causes a further rise in the concentration of actin responsive to the DNAase assay to 250 μg/ml of cells, compared with 270 μg/ml estimated by densitometry of stained gels. The oligomeric complex, consisting of actin, spectrin, and 4.1, that is extracted from the membrane at low ionic strength, generates no detectable actin monomer after the same treatment. From literature data on the number of cytochalasin binding sites per cell and our value for the total actin content, we obtain a number-average degree of polymerization for actin in the membrane of 12-17. The results lead to a model for the structure of the cytoskeletal network and suggest some consequences of metabolic depletion.
Publisher
Rockefeller University Press
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献