Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands.

Author:

Flucher B E,Lenglachner-Bachinger C,Pohlhammer K,Adam H,Mollay C

Abstract

The biosynthesis of the peptides caerulein and PGLa in granular skin glands of Xenopus laevis proceeds through a pathway that involves discrete morphological rearrangements of the entire secretory compartment. Immunocytochemical localization of these peptides during gland development indicates that biosynthetic precursors are synthesized in intact secretory cells, whereas posttranslational processing requires morphological reorganization to a vacuolated stage. The bulk of the processed secretory material is then stored in vacuolae-derived storage granules. In the mature gland, storage granules are still formed at a low level. However, in this case processing takes place in a distinct cytoplasmic structure, the multicored body, which we suggest to be functionally equivalent to vacuolae. When granular glands regenerate after having lost all their storage granules upon strong stimuli, another morphological pathway is used. 2 wk after gland depletion, secretory cells become arranged in a monolayer that covers the luminal surface of the gland. Storage granules are formed continuously within these intact secretory cells. Here, precursor processing does not require a vacuolated stage as in newly generated glands but occurs in multicored bodies. Most storage granules seem to be formed in the third week of regeneration. The high biosynthetic activity is also reflected by the high activity of the putative processing enzyme dipeptidyl aminopeptidase during this period of regeneration.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3