Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites.

Author:

Baas P W,Heidemann S R

Abstract

We have proposed that stable microtubule (MT) fragments that resist depolymerization may serve as nucleating elements for the local control of MT dynamics in the axon (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu, 1984, J. Cell Biol., 99:1289-1295). Here we report evidence that supports this proposal in studies on the role of MTs in the regrowth of neurites from the distal segments of amputated chick sensory neurites. Amputated neurites collapse to "beads" of axoplasm that rapidly regrow (Shaw, G., and D. Bray, 1977, Exp. Cell Res., 104:55-62). We examined both unarrested regrowth and regrowth after MT disassembly by either cold (-5 degrees C for 2 h) or nocodazole (0.1 microgram/ml for 15-20 min). In all these cases regrowth occurred at 3.5-4.5 micron/min with no delay times other than the times to reach 37 degrees C or rinse out the nocodazole. Electron micrographs of untreated beads show many MTs of varying lengths, while those of cold- and nocodazole-treated beads show markedly shorter MTs. The robust regrowth of neurites from beads containing only very short MTs argues against unfurling of intact MTs from the bead into the growing neurite. Electron micrographs of cold-treated beads lysed under conditions that cause substantial MT depolymerization in untreated intact neurites show persistent MT fragments similar to those in unlysed cold-treated beads. We interpret this as evidence that the MT fragments in cold-treated beads are somehow distinct from the majority of the MT mass that had depolymerized. Collapsed neurites treated with a higher dose of nocodazole (1.0 microgram/ml for 15-20 min) were completely devoid of MTs and regrew only after a 15-20 min delay in two cases but never regrew in 11 other cases. We found that MTs did not return in beads treated with 1.0 microgram/ml nocodazole even 30 min after removal of the drug. It was unlikely that the inability of these beads to reassemble MTs was due to incomplete removal of nocodazole in that a much higher dose (20 micrograms/ml nocodazole) could be quickly rinsed from intact neurites. Beads treated with 1.0 microgram/ml nocodazole could, however, be stimulated to reassemble MTs and regrow neurites by treatment with taxol. We conclude that the immediate, robust regrowth of neurites from collapsed beads of axoplasm requires MT nucleation sites to support MT reassembly.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3