Formation and alignment of Z lines in living chick myotubes microinjected with rhodamine-labeled alpha-actinin.

Author:

McKenna N M,Johnson C S,Wang Y L

Abstract

We have used fluorescence analogue cytochemistry in conjunction with time lapse recording to study the dynamics of alpha-actinin, a major component of the Z line, during myofibrillogenesis. Rhodamine-labeled alpha-actinin microinjected into living cultured chick skeletal myotubes became localized in discrete cellular structures within 1 h and remained specifically associated with structures for up to 4 d, allowing individual identified structures to be followed during development. In the most immature cells used, alpha-actinin was found in diffuse aggregates, some of which displayed sarcomeric periodicity. Aggregates were observed to coalesce into better defined structures (Z bands) that were approximately 1.0-micron wide. Z bands condensed into narrow, more intensely fluorescent Z lines in 4-48 h. During this period, Z lines grew laterally, primarily by the addition of small beads of alpha-actinin to existing Z lines or by the merging of small Z lines. In more mature cells, alpha-actinin added to Z lines without going through a visible intermediary structure. Mean sarcomere length did not change significantly during the stages examined, although the variability of sarcomere length did decrease markedly over time for identified sets of sarcomeres. At early stages, myofibrils frequently shifted position in both the longitudinal and lateral directions. Neighboring myofibrils were frequently associated for one or more sarcomeres sporadically along their length, such that the intervening sarcomeres were often misaligned. Associations between myofibrils were often transitory. Shifts in myofibril location in conjunction with the formation, breaking, and reformation of lateral associations between myofibrils facilitated the alignment of Z lines through a trial and error process.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3