Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments.

Author:

Pollard T D

Abstract

I measured the rate of elongation at the barbed and pointed ends of actin filaments by electron microscopy with Limulus sperm acrosomal processes as nuclei. With improvements in the mechanics of the assay, it was possible to measure growth rates from 0.05 to 280 s-1. At 22 degrees C in 1 mM MgCl2, 10 mM imidazole (pH 7), 0.2 mM ATP with 1 mM EGTA or 50 microM CaCl2 or with EGTA and 50 mM KCl, the elongation rates at both ends have a linear dependence on the ATP-actin concentration from the critical concentration to 20 microM. Consequently, over a wide range of subunit addition rates, the rate constants for association and dissociation of ATP-actin are constant. This shows that the nucleotide composition at or near the end of the growing filament is either the same over this range of growth rates or has no detectable effect on the rate constants. Under conditions where polymerization is fastest (MgCl2 + KCl + EGTA) the rate constants have these values: (table; see text) Compared with ATP-actin, ADP-actin associates slower at both ends, dissociates faster from the barbed end, but dissociates slower from the pointed end. Taking into account the events at both ends, these constants and a simple Oosawa-type model account for the complex three-phase dependence of the rate of polymerization in bulk samples on the concentration of ATP-actin monomers observed by Carlier, M.-F., D. Pantaloni, and E. D. Korn (1985, J. Biol. Chem., 260:6565-6571). These constants can also be used to predict the reactions at steady state in ATP. There will be slow subunit flux from the barbed end to the pointed end. There will also be minor fluctuations in length at the barbed end due to occasional rapid dissociation of strings of ADP subunits but the pointed end will be relatively stable.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 727 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3