Affiliation:
1. Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109; and Biogen, Inc., Cambridge, Massachusetts 02142
Abstract
Embryonic development requires cell migration in response to positional cues. Yet, how groups of cells recognize and translate positional information into morphogenetic movement remains poorly understood. In the developing kidney, the ureteric bud epithelium grows from the nephric duct towards a group of posterior intermediate mesodermal cells, the metanephric mesenchyme, and induces the formation of the adult kidney. The secreted protein GDNF and its receptor RET are required for ureteric bud outgrowth and subsequent branching. However, it is unclear whether the GDNF–RET pathway regulates cell migration, proliferation, survival, or chemotaxis. In this report, we have used the MDCK renal epithelial cell line to show that activation of the RET pathway results in increased cell motility, dissociation of cell adhesion, and the migration towards a localized source of GDNF. Cellular responses to RET activation include the formation of lamellipodia, filopodia, and reorganization of the actin cytoskeleton. These data demonstrate that GDNF is a chemoattractant for RET-expressing epithelial cells and thus account for the developmental defects observed in RET and GDNF mutant mice. Furthermore, the RET-transfected MDCK cells described in this report are a promising model for delineating RET signaling pathways in the renal epithelial cell lineage.
Publisher
Rockefeller University Press
Reference51 articles.
1. Developmental expression of the RETprotooncogene;Avantaggiato;Cell Growth Differ,1994
2. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud;Bladt;Nature,1995
3. The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins;Borello;Oncogene,1994
4. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase cγ;Borrello;Mol Cell Biol,1996
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献