Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells.

Author:

Culp L A,Rollins B J,Buniel J,Hitri S

Abstract

Footpad adhesion sites pinch off from the rest of the cell surface during EGTA-mediated detachment of normal or virus-transformed murine cells from their tissue culture substrates. In these studies, highly purified trypsin and testicullar hyaluronidase were used to investigate the selective destruction or solubilization of proteins and polysaccharides in this substrate-attached material (SAM). Trypsin-mediated detachment of cells or trypsinization of SAM after EGTA-mediated detachment of cells resulted in the following changes in SAM composition: (a) solubilization of 50-70% of the glycosaminoglycan polysaccharide with loss of only a small fraction of the protein, (b) selective loss of one species of glycosaminoglycan-associated protein in longterm radiolabeled preparations, (c) no selective loss of the LETS glycoprotein or cytoskeletal proteins in longterm radiolabeled preparations, and (d) selective loss of one species of glycosaminoglycan-associated protein, a protion of the LETS glycoprotein, and proteins Cd (mol wt 47,000 and Ce' (mol wt 39,000) in short term radiolabeled preparations. Digestion of SAM with testicular hyaluronidase resulted in: (a) almost complete solubilization of the hyaluronate and chondroitin sulfate moieties from long term radiolabeled SAM with minimal loss of heparan sulfate, (b) solubilization of a small portion of the LETS glycoprotein and the cytoskeletal proteins from longterm radiolabeled SAM, (c) resistance to solubilization of protein and polysaccharide in reattaching cell SAM which contains principally heparan sulfate, and (d) complete solubilization of the LETS glycoprotein in short term radiolabeled preparations with no loss of cytoskeletal proteins. Thus, there appear to be two distinct pools of LETS in SAM, one associated in some unknown fashion with hyaluronate-chondroitin sulfate complexes, and a second associated with some other component in SAM, perhaps heparan sulfate. These data, together with other results, suggest that the cell-substrate adhesion process may be mediated principally by a heparan sulfate--LETS complex and that hyaluronate-chondroitin sulfate complexes may be important in the detachability of cells from the serum-coated substrate by destabilizing LETS matrices at posterior footpad adhesion sites.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3