Abstract
The ultrastructural effects of dark, light, and low temperature were investigated in the cone cell endings of the red-eared turtle (Pseudemys scripta elegans). Thin sections revealed that in dark-adapted retinas maintained at 22 degrees C, the neural processes which contact the cone cells at the invaginating synapses penetrated deeply into the photoreceptor endings. When dark-adapted retinas were illuminated for 1 h at 22 degrees C, the invaginating processes were apparently extruded from the synaptic endings. On the other hand, 1-h exposure to a temperature of 4 degrees C in the dark caused the invaginating processes to become much more strikingly inserted than at room temperature. A morphometric analysis showed that the ratio between the synaptic surface density of the endings and their total surface density decreased in the light and increased in the dark and cold. Freeze-fracturing documented fusion of synaptic vesicles with the presynaptic membrane in all conditions tested. These observations suggest that the changes in configuration of the pedicles in the light, dark, and cold reflect a different balance between addition and retrieval of synaptic vesicle membrane from the plasmalemma; in the dark, the rate of vesicle fusion is increased, whereas in the cold, membrane retrieval is blocked. When the eyecups were warmed up and illuminated for 30-45 min after cold exposure, a striking number of vacuoles and cisterns appeared in the cytoplasm and coated vesicles were commonly seen budding from the plasmalemma. 60-90 min after returning to room temperature, the endings had reverted to their normal configuration, and the vast majority of vacuoles, cisterns, and coated vesicles had disappeared. When horseradish peroxidase was included in the incubation medium, very few synaptic vesicles were labeled at the end of the period of cold exposure. 30-45 min after returning to 22 degrees C, vacuoles and cisterns contained peroxidase, whereas most synaptic vesicles were devoid of reaction product. 2 h after returning to 22 degrees C, coated vesicles, vacuoles, and cisterns had disappeared and a number of synaptic vesicles were labeled. These experiments suggest that vacuoles, cisterns, and coated vesicles mediate the retrieval of the synaptic vesicle membrane that has been added to the plasmalemma during cold exposure.
Publisher
Rockefeller University Press
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献