Drosophila development requires spectrin network formation.

Author:

Deng H1,Lee J K1,Goldstein L S1,Branton D1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138.

Abstract

The head-end associations of spectrin give rise to tetramers and make it possible for the molecule to form networks. We analyzed the head-end associations of Drosophila spectrin in vitro and in vivo. Immunoprecipitation assays using protein fragments synthesized in vitro from recombinant DNA showed that interchain binding at the head end was mediated by segment 0-1 of alpha-spectrin and segment 18 of beta-spectrin. Point mutations equivalent to erythroid spectrin mutations that are responsible for human hemolytic anemias diminished Drosophila spectrin head-end interchain binding in vitro. To test the in vivo consequence of deficient head-end interchain binding, we introduced constructs expressing head-end interchain binding mutant alpha-spectrin into the Drosophila genome and tested for rescue of an alpha-spectrin null mutation. An alpha-spectrin minigene lacking the codons for head-end interchain binding failed to rescue the lethality of the null mutant, whereas a minigene with a point mutation in these codons overcame the lethality of the null mutant in a temperature-dependent manner. The rescued flies were viable and fertile at 25 degrees C, but they became sterile because of defects in oogenesis when shifted to 29 degrees C. At 29 degrees C, egg chamber tissue disruption and cell shape changes were evident, even though the mutant spectrin remained stably associated with cell membranes. Our results show that spectrin's capacity to form a network is a crucial aspect of its function in nonerythroid cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3