The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues.

Author:

Giannini G1,Conti A1,Mammarella S1,Scrobogna M1,Sorrentino V1

Affiliation:

1. European Molecular Biology Laboratory, Heidelberg, Germany.

Abstract

Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle contraction. Increasing evidence has recently suggested that RyRs may be more widely expressed, but this has never been extensively examined. Therefore, we cloned three cDNAs corresponding to murine RyR homologues to carry a comprehensive analysis of their expression in murine tissues. Here, we report that the three genes are expressed in almost all tissues analyzed, where tissue-specific patterns of expression were observed. In the uterus and vas deferens, expression of RyR3 was localized to the smooth muscle component of these organs. In the testis, expression of RyR1 and RyR3 was detected in germ cells. RyR mRNAs were also detected in in vitro-cultured cell lines. RyR1, RyR2, and RyR3 mRNA were detected in the cerebrum and in the cerebellum. In situ analysis revealed a cell type-specific pattern of expression in the different regions of the central nervous system. The differential expression of the three ryanodine receptor genes in the central nervous system was also confirmed using specific antibodies against the respective proteins. This widespread pattern of expression suggests that RyRs may participate in the regulation of intracellular calcium homeostasis in a range of cells wider than previously recognized.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 524 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3