Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros.

Author:

Woolf A S1,Kolatsi-Joannou M1,Hardman P1,Andermarcher E1,Moorby C1,Fine L G1,Jat P S1,Noble M D1,Gherardi E1

Affiliation:

1. Units of Developmental Biology and Medicine, Institute of Child Health, London, United Kingdom.

Abstract

Several lines of evidence suggest that hepatocyte growth factor/scatter factor (HGF/SF), a soluble protein secreted by embryo fibroblasts and several fibroblast lines, may elicit morphogenesis in adjacent epithelial cells. We investigated the role of HGF/SF and its membrane receptor, the product of the c-met protooncogene, in the early development of the metanephric kidney. At the inception of the mouse metanephros at embryonic day 11, HGF/SF was expressed in the mesenchyme, while met was expressed in both the ureteric bud and the mesenchyme, as assessed by reverse transcription PCR, in situ hybridization, and immunohistochemistry. To further investigate the expression of met in renal mesenchyme, we isolated 13 conditionally immortal clonal cell lines from transgenic mice expressing a temperature-sensitive mutant of the SV-40 large T antigen. Five had the HGF/SF+/met+ phenotype and eight had the HGF/SF-/met+ phenotype. None had the HGF/SF+/met- nor the HGF/SF-/met- phenotypes. Thus the renal mesenchyme contains cells that express HGF/SF and met or met alone. When metanephric rudiments were grown in serum-free organ culture, anti-HGF/SF antibodies (a) inhibited the differentiation of metanephric mesenchymal cells into the epithelial precursors of the nephron; (b) increased cell death within the renal mesenchyme; and (c) perturbed branching morphogenesis of the ureteric bud. These data provide the first demonstration for coexpression of the HGF/SF and met genes in mesenchymal cells during embryonic development and also imply an autocrine and/or paracrine role for HGF/SF and met in the survival of the renal mesenchyme and in the mesenchymal-epithelial transition that occurs during nephrogenesis. They also confirm the postulated paracrine role of HGF/SF in the branching of the ureteric bud.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3