Tyrosine-Phosphorylated Extracellular Signal–Regulated Kinase Associates with the Golgi Complex during G2/M Phase of the Cell Cycle

Author:

Cha Hyukjin1,Shapiro Paul1

Affiliation:

1. Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland 21201

Abstract

Phosphorylation of the extracellular signal–regulated kinases (ERKs) on tyrosine and threonine residues within the TEY tripeptide motif induces ERK activation and targeting of substrates. Although it is recognized that phosphorylation of both residues is required for ERK activation, it is not known if a single phosphorylation of either residue regulates physiological functions. In light of recent evidence indicating that ERK proteins regulate substrate function in the absence of ERK enzymatic activity, we have begun to examine functional roles for partially phosphorylated forms of ERK. Using phosphorylation site–specific ERK antibodies and immunofluorescence, we demonstrate that ERK phosphorylated on the tyrosine residue (pY ERK) within the TEY activation sequence is found constitutively in the nucleus, and localizes to the Golgi complex of cells that are in late G2 or early mitosis of the cell cycle. As cells progress through metaphase and anaphase, pY ERK localization to Golgi vesicles is most evident around the mitotic spindle poles. During telophase, pY ERK associates with newly formed Golgi vesicles but is not found on there after cytokinesis and entry into G1. Increased ERK phosphorylation causes punctate distribution of several Golgi proteins, indicating disruption of the Golgi structure. This observation is reversible by overexpression of a tyrosine phosphorylation–defective ERK mutant, but not by a kinase-inactive ERK2 mutant that is tyrosine phosphorylated. These data provide the first evidence that pY ERK and not ERK kinase activity regulates Golgi structure and may be involved in mitotic Golgi fragmentation and reformation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3