Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of [3H]serotonin.

Author:

Tamir H,Theoharides T C,Gershon M D,Askenase P W

Abstract

We studied binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells. We found two types of serotonin binding protein in RBL cells. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 X 10(-6) M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD1 = 4.5 X 10(-8) M; KD2 = 3.9 X 10(-6) M) did not bind to Con A. Moreover, binding of [3H]serotonin to protein of peak I was sensitive to inhibition by reserpine, while binding of [3H]serotonin to protein of peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract peak I than peak II protein. Neither peak I nor peak II protein resembled the serotonin binding protein (SBP) that is found in serotonergic neurons of the brain and gut. Electron microscope radioautographic analysis of the intracellular distribution of [3H]serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules. No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but peak I protein may be associated with the granular membrane while peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3